Skip to main content

Earth’s Oldest Impact Crater Turns Out to Be Much Younger, Scientists Reveal in New Study


A location in Western Australia that used to be named as the oldest meteorite impact crater on Earth is now actually a lot younger than that, scientists announced today in Science Advances. The structure — previously dated to 3.5 billion years ago and located within Western Australia's North Pole Dome region of the Pilbara — was believed to be older than any of Earth's known impact craters. Today, new research published in the journal Geochemistry found that what we now call the Miralga impact structure is, in fact, much younger, at 2.7 billion years old, and considerably smaller in diameter. This recasts earlier ideas on the early Earth's geological activity and questions previous theories regarding impact-driven crust formation or perhaps even early life.

Miralga Crater Loses Oldest Impact Title but Gains New Scientific Relevance

As per The Conversation article republished by Space.com, the teams that explored the crater could only point to one thing that was likely — it had been formed by an impact. However, they ultimately disagreed as to whether this event had been and how large it was. Younger rocks contain shatter cones, indicating Earth's early continental geology shielded the impact to a specific 2.7 billion-400 million-year period despite earlier assertions.

They made the determination to honour the cultural revision of one site from 100 km across to a more manageable 16 km wide crater named Miralga. It's the site – still affected by seawater – of events too recent to influence the Earth's crust.

The Miralga basalt feature (unique to basalt) is a rare site for an instrument to practice on before heading to Mars, while advancing our understanding of impacts and early life prospects.

Isotopic dating to clarify the crucial part played by this, the oldest crater on Earth and unique in a geological sense, in planetary science and early Earth history is presently ongoing at Miralga.

Comments

Popular posts from this blog

CSIRO Uses Quantum AI to Revolutionize Semiconductor Design

Researchers at Australia's CSIRO have achieved a world-first demonstration of quantum machine learning in semiconductor fabrication. The quantum-enhanced model outperformed conventional AI methods and could reshape how microchips are designed. The team focused on modeling a crucial—but hard to predict—property called “Ohmic contact” resistance, which measures how easily current flows where metal meets a semiconductor. They analysed 159 experimental samples from advanced gallium nitride (GaN) transistors (known for high power/high-frequency performance). By combining a quantum processing layer with a final classical regression step, the model extracted subtle patterns that traditional approaches had missed. Tackling a difficult design problem According to the study, the CSIRO researchers first encoded many fabrication variables (like gas mixtures and annealing times) per device and used principal component analysis (PCA) to shrink 37 parameters down to the five most important ones. ...

Hubble Uncovers Multi-Age Stars in Ancient Cluster, Reshaping Galaxy Origins

Astronomers call ancient star clusters like NGC 1786 “time capsules” for their galaxy, preserving some of its oldest stars. A new image from NASA's Hubble Space Telescope offers an unprecedented close-up of this dense cluster 160,000 light-years away in the Large Magellanic Cloud. Hubble's data show that NGC 1786 contains stars of different ages – a surprising find, since such clusters were once thought to hold a single stellar generation. This multi-age discovery is reshaping our view of how galaxies built their first stars, and suggests more complex early history. Mixed-Age Stars in a Galactic Time Capsule According to the official source, this Hubble image shows the globular cluster NGC 1786, a ball of densely packed stars in the Large Magellanic Cloud about 160,000 light-years from Earth. Astronomers captured this picture as part of a program comparing ancient clusters in nearby dwarf galaxies (like the LMC) with clusters in our own Milky Way. The surprising discovery is th...

A Planet with a Death Wish: How HIP 67522 b Is Forcing Its Star to Explode

Scientists have caught a planet with a death wish, which is an alien world, orbiting very near to its star, and so speedy that it is causing the star to go to its death with bursting explosions. HIP 67522 b is the planet, and it is of the same size as Jupiter with a seven-day orbit around its host star. These orbits are disturbing the magnetic field of the star and causing enormous blasting eruptions to blow back the planet and make it wrinkled. This is the first time that a planet is influencing the host star, as the astronomers reported in a study published on July 2, 2025, in the Journal Nature. A Planet with a Death Wish: HIP 67522 b's Fiery Orbit As per the study by NASA, Ekaterina Ilin, the first author of the study and an astrophysicist at the Netherlands Institute for Radio Astronomy, said that the planet was observed to trigger the energetic flares. It has been predicted by the scientists that the waves are setting off explosions that are going to happen. Magnetic Chaos: P...